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1 Introduction

We are witnessing, across a wide range of domains, a shift away from the exclusive ownership and

consumption of resources to one of shared use and consumption. This shift is taking advantage

of innovative new ways of peer-to-peer sharing that are voluntary and enabled by internet-based

exchange markets and mediation platforms. Value is derived from the fact that many resources are

acquired to satisfy infrequent demand but are otherwise poorly utilized (for example, the average

car in the US is used less than 5 percent). Several successful businesses in the US and elsewhere,

such as AirbnB for homes, RelayRides for cars, LiquidSpace for office space, JustPark for parking,

and StyleLend for designer clothing, provide a proof of concept and evidence for the viability of

peer-to-peer product sharing or collaborative consumption (the term we use in the rest of the

paper). These businesses and others allow owners to rent on a short-term basis poorly utilized

assets and non-owners to access these assets through renting on an as-needed basis. Collectively,

these businesses and other manifestations of the collaborative consumption of products and services

are giving rise to what is becoming known as the sharing economy1.

The peer-to-peer sharing of products is not a new concept. However, recent technological

advances in several areas have made it more feasible by lowering the associated search and trans-

actions costs. These advances include the development of online marketplaces, mobile devices and

platforms, electronic payments, and two-way reputation systems whereby users rate providers and

providers rate users. Other drivers behind the rise of collaborative consumption are societal and

include increased population density in metropolitan areas around the world, increased concern

about the environment (collaborative consumption is viewed as a more sustainable alternative to

traditional modes of consumption), and increased desire for community and altruism among the

young and educated.

Collaborative consumption has the potential of increasing access while reducing investments in

resources and infrastructure. In turn, this could have the twin benefit of improving consumer welfare

(individuals who may not otherwise afford a product now have an opportunity to use it) while

1The term sharing economy has been used to refer to businesses that enable the foregoing of ownership in favor of
“on-demand” access. In several cases, this involves a single entity that owns the physical assets (e.g., Zipcar for short
term car rentals). It also encompasses the peer-to-peer provisioning of services (e.g., Uber for transportation services,
TaskRabbit for errands, and Postmates for small deliveries). For further discussion and additional examples, see
Botsman and Rogers [2010], Malhotra and Alstyne [2014], Cusumano [2014], and Chase [2015].
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reducing societal costs (externalities, such as pollution that may be associated with the production,

distribution, use, and disposal of the product). It also has the potential of providing a source of net

income for owners by monetizing poorly utilized assets, which are in some cases also expensive and

rapidly depreciating. Take cars for example. The availability of a sharing option could lead some

to forego car ownership in favor of on-demand access. In turn, this could result in a corresponding

reduction in congestion and emissions and, eventually, in reduced investments in roads and parking

infrastructure. However, increased collaborative consumption may have other consequences, some

of which may be undesirable. For example, greater access to cars could increase car usage and,

therefore, lead to more congestion and pollution if it is not accompanied by a sufficient reduction in

the numbers of cars2. This could occur if sharing leads to speculative investments in cars and price

inflation, or yet if it affects the usage, availability and pricing of other modes of public transport,

such as taxis, buses, and trains.

Collaborative consumption raises several important questions. How does collaborative con-

sumption affect ownership and usage of resources? Is it necessarily the case that collaborative

consumption leads to lower ownership, lower usage, or both (and therefore to improved sustainabil-

ity)? If not, what conditions would favor lower ownership, lower usage, or both? Who benefits the

most from collaborative consumption among owners, and renters? To what extent would a profit-

maximizing platform, through its choice of rental prices, improve social welfare? To what extent

do frictions, such as moral hazard (additional wear and tear renters place on rented resources) and

inconvenience experienced by renters affect platform profit and social welfare?

In this paper, we address these and other related questions. We describe an equilibrium model

of peer-to-peer product sharing, where individuals with varying usage levels make decisions about

whether or not own. In the presence of collaborative consumption, owners are able to generate

income from renting their products to non-owners while non-owners are able to access these products

through renting. The matching of owners and renters is facilitated by a platform, which sets the

rental price and charges a commission fee. Because, supply and demand can fluctuate over the

short run, we allow for the possibility that an owner may not always be able to find a renter when

2A recent article in the New York Times (Editorial [2015]) notes that “The average daytime speed of cars in Man-
hattan’s business districts has fallen to just under 8 miles per hour this year, from about 9.15 miles per hour in 2009.
City officials say that car services like Uber and Lyft are partly to blame. So Mayor Bill de Blasio is proposing to
cap their growth.”
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she puts her product up for rent. Similarly, we allow for the possibility that a renter may not always

be able to find a product to rent when he needs one. We refer to the uncertainty regarding the

availability of renters and products as matching friction and describe a model for this uncertainty.

We also account for the moral hazard cost incurred by owners due to the additional wear and tear

that a renter places on a rented product and for the inconvenience cost experienced by renters for

using a product that is not their own.

For a given price and a commission fee, we characterize equilibrium ownership and usage levels,

consumer surplus, and social welfare. We compare each in systems with and without collaborative

consumption and examine the impact of various problem parameters including price, commission

fee, cost of ownership, moral hazard cost, and inconvenience cost. We also characterize equilibrium

outcomes when the platform decides on the rental price to maximize its own profit. We compare

the resulting social welfare to that realized in the absence of collaborative consumption and to that

obtained under a social welfare-maximizing platform. Our main findings include the following:

• Depending on the rental price, we show that collaborative consumption can result in either

higher or lower ownership. In particular, we show that when the rental price is sufficiently

high (above a well-specified threshold), collaborative consumption leads to higher ownership.

We show that this threshold is decreasing in the cost of ownership. That is, collaborative

consumption is more likely to lead to more ownership when the cost of ownership is high (this

is because collaborative consumption allows individuals to offset the high ownership cost and

pulls in a segment of the population that may not otherwise choose to own).

• Similarly, we show that collaborative consumption can lead to either higher or lower usage,

with usage being higher when price is sufficiently high. Thus, it is possible for collaborative

consumption to result in both higher ownership and higher usage (it is also possible for

ownership to be lower but usage to be higher and for both ownership and usage to be lower).

• We show that consumers always benefit from collaborative consumption, with individuals

who, in the absence of collaborative consumption, are indifferent between owning and not

owning benefitting the most. This is because among non-owners those with the most usage

(and therefore end up renting the most) benefit the most from collaborative consumption.

Similarly, among owners, those with the least usage (and therefore end up earning the most
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rental income) benefit the most.

• We show that the platform’s profit is not monotonic in the cost of ownership, first increasing

and then decreasing, implying that a platform is least profitable when the cost of ownership is

either very high or very low (those two extremes lead to scenarios with either mostly renters

and few owners or mostly owners and few renters). The platform is most profitable when

owners and renters are sufficiently balanced.

• We observe that the platform’s profit is also not monotonic in the cost of moral hazard,

implying that a platform may not have an incentive to completely eliminate moral hazard.

This is because the platform can leverage moral hazard to induce desirable ownership levels

without resorting to extreme pricing, which can be detrimental to its revenue.

The rest of the paper is organized as follows. In Section 2, we provide a review of related

literature. In Section 3, we describe our model. In Section 4, we provide an analysis of the

equilibrium. In Section 5, we consider the platform’s problem. In Section 6, we offer concluding

comments.

2 Related Literature

Our work is related to the literature on two-sided markets (see for example Rochet and Tirole

[2006]; Weyl [2010]; Hagiu and Wright [2015]) and network externalities (Liebowitz and Margolis

[1994]; Katz and Shapiro [1985]; Ambrus and Argenziano [2004]). Examples of two-sided markets

include video game platforms which need to attract both game developers to design games and

game players to use the video game platform; social media which bring together members and

advertisers; and operating systems for computers and smart phones, which connect users and

application developers. A common feature of two-sided markets is that the utility of individuals on

each side of the market increases with the size of the other side of the market. As a result, it can

be beneficial for the platform to heavily subsidize one side of the market (e.g., social media sites

are typically free to members). Collaborative consumption is different from two-sided markets in

several ways, the most important of which is that the two sides are not distinct. In collaborative

consumption, being either an owner or a renter is a decision that users of the platform make, with
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more owners implying fewer renters (and vice-versa). Therefore, heavily subsidizing one side of the

market may not necessarily be desirable as it can create an imbalance in the supply and demand

for the shared resource.

There is extensive literature that deals with the social sharing (piracy) of information goods

(see for example Novos and Waldman [1984]; Johnson and Waldman [2003]; and Besen and Kirby

[1989]). An important result from this literature is that allowing for some piracy can actually benefit

the firm that supplies the information good (as well as maximize social welfare). This is because

the firm can, with its choice of prices, strategically target sharing groups rather than individuals

(e.g., Bakos et al. [1999]; Galbreth et al. [2012]). The firm can also benefit from positive network

externalities (e.g., Shy and Thisse [1999]; Varian [2005]) and from reduced price competition as

price sensitive consumers copy instead of buy (e.g., Jain [2008]). The sharing of physical goods, as

we consider in this research, is substantially different from the illegal sharing of information goods.

For example, physical goods cannot be costlessly duplicated and the owner of a physical good must

forego consumption while the good is being rented. As a result, the frequency of usage for each

individual is not as relevant as it is in the collaborative consumption of physical goods.

Our work is also related to the literature on secondary markets for durable goods. Used products

with inferior quality or older vintage sold on a secondary market can compete with a firm’s new

products, reducing the demand for such products. The presence of a secondary market can, on the

other hand, enhance the perceived value of such products (and consequently demand) as customers

account for the products’ resale value when making buying decisions. Hence, firms must consider

these counteracting effects in making product pricing and durability decisions. Examples from this

literature include Waldman [1993]; Waldman [1996]; Waldman [1997]; Fudenberg and Tirole [1998];

Chevalier and Goolsbee [2009]; and Chen et al. [2013], and the references therein. A review of this

literature can be found in Waldman [2003].

Markets with collaborative consumption involving peer-to-peer short-term rentals, such as the

one we study in this paper, are different from those with a secondary market for used goods. The

latter involves the permanent transfer of ownership from the seller to the buyer and does not have

the feature of joint consumption among owners and renters. More significantly, a secondary market

for used goods does not have the feature of uncertain demand and supply present in the setting we

study. Nevertheless, we show, that ownership can increase with collaborative consumption if the
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rental income is sufficiently high.

There is a small but growing number of papers that deal with peer-to-peer marketplaces with

collaborative consumption features. For example, Fradkin et al. [2015] studies sources of inefficiency

in matching buyers and suppliers in online market places. Using a counterfactual study, they

show how changes to the ranking algorithm of Airbnb can improve the rate at which buyers are

successfully matched with suppliers. Zervas et al. [2015] examine the relationship between Airbnb

supply and hotel room revenue in Texas and find that an increase in Airbnb supply has only a

modest negative impact on hotel revenue. Cullen and Farronato [2014] describe a model of peer-

to-peer labor marketplaces. They calibrate the model using data from TaskRabbit and find that

supply is highly elastic, with increases in demand matched by increases in supply per worker with

little or no impact on price.

Papers that are closest in spirit to ours are Fraiberger and Sundararajan [2015] and Jiang and

Tian [2015]. Fraiberger and Sundararajan [2015] describe a dynamic programing model where

individuals make decisions in each period regarding whether to purchase a new car, purchase a

used a car, or not purchase anything. They model matching friction, as we do, but assume that

the renter-owner matching probabilities are exogenously specified and not affected by the ratio of

owners to renters (in our case, we allow for these to depend on the ratio of owners to renters which

turns out to be critical in the decisions of individuals on whether to own or rent). They assume that

the rental income, determined by a single market-clearing price, is transferred entirely from renters

to owners (they do not model the platform explicitly and assume the rental price is determined

by a single market clearing price). They provide numerical results that show that collaborative

consumption leads to a reduction in new and used car ownership, an increase in the fraction of

the population who do not own, and an increase in the usage intensity per vehicle. In this paper,

we provide analytical results regarding ownership and usage, and provide conditions under which

either one increases.

Jiang and Tian [2015] describe a two-period model, where individuals first decide on whether

or not to own a product. This is followed by owners deciding in each period on whether to use the

product themselves or rent it. They assume that demand always matches supply through a market

clearing price and do not consider the possibility of a mismatch, because of matching frictions,

between supply and demand. They take the perspective of the product manufacturer and study
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the manufacturer’s pricing and quality decisions in view of the product-sharing market, which is

different from our focus on the platform and on outcomes regarding ownership and usage. They

show that the moral hazard cost (the additional wear and tear renters place on the product) and the

platform’s commission can have a non-monotonic effect on the profits of the original manufacturer

of the product, the surplus of consumers, and social welfare.

An important application of collaborative consumption is shared mobility. Although the liter-

ature on peer-to-peer sharing is limited, there is literature that studies shared mobility that does

not involve individual ownership. Such systems typically consist of a service provider who owns the

vehicles, such as cars or bikes, and consumers who rent these vehicles from the service provider.

A common feature of these services is their flexibility (e.g., rental periods can be in small time

increments and the vehicles can be accessed from/returned to multiple locations). A stream within

this literature focuses on the operation and logistics of these sharing systems (see for example,

Schuijbroek et al. [2013]; Raviv and Kolka [2013]; Shu et al. [2013]). Another stream examines the

sustainability of vehicle sharing relative to traditional ownership (see for example Cervero et al.

[2007], Lane [2005], Cervero et al. [2007], Martin et al. [2010], and Martin and Shaheen [2011]).

Some of the empirical findings from this literature indicate that car sharing increases emissions by

expanding access to cars. Our work is different from the above-mentioned literature in that there is

not a single entity that owns all the vehicles and with owners being simultaneously consumers and

service providers. However, we do provide results regarding ownership and usage and conditions

under which either one increases under collaborative consumption.

3 Model Description

In this section, we describe our model of collaborative consumption. We reference the case of

car sharing. However, the model applies more broadly to the collaborative consumption of other

products. We consider a population of individuals who are heterogeneous in their product usage,

with their type characterized by their usage level ξ. We assume that the utility derived by an

individual with type ξ, u(ξ) is concave increasing in ξ. Without loss of generality, we normalize

the usage level to [0, 1], where ξ = 0 corresponds to no usage at all and ξ = 1 to full usage. We let

f(ξ) denote the density function of the usage distribution in the population.
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We assume products are homogeneous in their features, quality, and cost of ownership. In the

absence of collaborative consumption, each individual makes a decision about whether or not to

own. In the presence of collaborative consumption, each individual decides on whether to own, rent

from others who own, or neither. Owners incur the fixed cost of ownership but can now generate

income by renting their products to others who choose not to own. Renters pay the rental fee but

avoid the fixed cost of ownership.

We let p denote the rental price per unit of usage that renters pay (a uniform price is consistent

with observed practices by certain peer-to-peer platforms when the goods are homogenous). This

rental price may be set by a third party platform (an entity that may be motivated by profit,

total social welfare, or some other concern). The platform extracts a commission from successful

transactions, which we denote by γ, where 0 ≤ γ < 1, so that the rental income seen by the owner

per unit of usage is (1− γ)p. We let α, where 0 ≤ α ≤ 1 denote the probability in equilibrium that

an owner, whenever she puts her product up for rent, is successful in finding a renter. Similarly,

we denote by β, where 0 ≤ β ≤ 1, the probability that a renter, whenever he decides to rent, is

successful in finding an available product (the probabilities α and β are determined endogenously

in equilibrium). A renter resorts to his outside option (e.g., pubic transport in the case of cars)

whenever he is not successful in finding a product to rent. The owner incurs a fixed cost of

ownership, denoted by c. Whenever the product is rented, the owner incurs an additional cost,

denoted by w, due to extra wear and tear the renter places on the product (a moral hazard the

owner faces because of the renter’s potential negligence and mishandling of the product). Renters,

on the other hand, incur an inconvenience cost, denoted by d (in addition to paying the rental fee),

from using someone else’s product and not their own. Without loss of generality, we assume that

c, d, p, w ∈ [0, 1].

We assume that an owner would always put her product out for rent when she is not using it.

In other words, usage corresponds to the fraction of time an owner would like to have access to

her product, regardless of whether or not she is actually using it. An owner has always a priority

in accessing her product. Hence her usage can always be fulfilled. We also assume that a renter

always prefers renting to the outside option. Otherwise, rentals would never take place as the

outside option is assumed to be always available. There are of course settings where an individual

would use a mix of options (e.g., different transportation methods). In that case, ξ corresponds
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to the portion of usage that an individual prefers to fulfill using the product (e.g., a car and not

public transport).

The payoff of an owner with usage level ξ can now be expressed as3

πo(ξ) = u(ξ) + (1− ξ)α[(1− γ)p− w]− c, (1)

while the payoff of a renter as

πr(ξ) = u(βξ)− (p+ d)βξ. (2)

The payoff of an owner has three terms: the utility derived from usage, the income derived from

renting (net of the wear and tear cost), and the cost of ownership. The income from renting is

realized only when the owner is able to find a renter. The payoff of a renter is the difference between

the utility derived from renting and the cost of renting (the sum of rental price and inconvenience

cost). This payoff is realized only for the fraction of usage that can be satisfied through rental.

Without loss of generality, the value of the outside option (e.g., using public transport) is normalized

to zero4.

An individual with type ξ would participate in collaborative consumption as an owner if the

following conditions are satisfied

πo(ξ) ≥ πr(ξ) and πo(ξ) ≥ 0.

The first constraint is an incentive compatibility constraint that ensures that an individual with

type ξ prefers to be an owner rather than be a renter. The second constraint is a participation

constraint that ensures the individual participates in collaborative consumption. Similarly, an

individual with type ξ would participate in collaborative consumption as a renter if the following

conditions are satisfied

πr(ξ) ≥ πo(ξ) and πr(ξ) ≥ 0.

3We assume usage is exogenously determined and unaffected by the presence of collaborative consumption (i.e., the
usage of each individual is mostly inflexible and must be satisfied through either renting or owning).
4Suppose the utility derived from using an outside option is o per unit time. Then, the renter’s payoff becomes πr(ξ) =
u(βξ)−(p+d)βξ+o(1−β)ξ. Letting v(ξ) = u(ξ)−oξ, πo can be simplified to πo(ξ) = v(ξ)+(1−ξ)α[(1−γ)p−w]−c+oξ,
and πr to πr(ξ) = v(βξ) − (p + d)βξ + oξ. An individual’s decision, of being an owner or renter, does not change if
oξ is eliminated from both equations. This leads to (1) and (2) with v(ξ) in place of u(ξ).
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If πo(ξ)− πr(ξ) is monotonically increasing in ξ and u(θ) ≥ (p+ d)θ for θ ∈ [0, 1], collaborative

consumption would take place if there exists θ ∈ (0, 1) such that

πo(θ) = πr(θ). (3)

The parameter θ would then segment the population into owners and renters, where individuals

with ξ > θ are owners and individuals with ξ < θ are renters (an individual with ξ = θ is indifferent

between owning and renting). We refer to ω =
∫
[θ,1] f(ξ)dξ, the fraction of owners in the population,

as the ownership level or simply ownership.

In the absence of collaborative consumption, an individual would own a car if u(ξ) ≥ c and

would not otherwise. Let θ̂ denote the solution to u(ξ) = c. Then, the fraction of the population

that corresponds to owners (ownership) is ω̂ =
∫
[θ̂,1] f(ξ)dξ.

3.1 Matching Supply with Demand

In the presence of collaborative consumption, let D(θ) denote the aggregate demand (for car rentals)

generated by renters and S(θ) the aggregate supply generated by owners, for given θ. Then,

D(θ) =

∫
[0,θ)

ξf(ξ)dξ,

and

S(θ) =

∫
[θ,1]

(1− ξ)f(ξ)dξ.

In addition, let q(θ) =
∫
[θ,1] ξf(ξ)dξ+β

∫
[0,θ] ξf(ξ)dξ denote the total usage, where the first term is

usage due to owners and the second term is usage due to renters (note the second term is modulated

by β).

Let

ρ(θ) =
D(θ)

S(θ)
. (4)

Then ρ(θ) can be viewed as a measure of the relative demand for the available cars. A higher

ρ(θ) indicates that it is more likely for an owner to rent her car, implying a higher owner surplus.

However, a higher ρ(θ) also indicates that a renter is less likely to find an available car, implying
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a lower renter surplus. Hence, with collaborative consumption, there is ongoing tension between

having too many renters (increases α but decreases β) and too many owners (decreases α but

increases β). This tension is resolved in equilibrium via θ, which balances the payoff of owners and

renters and determines the fraction of each in the population.

For a given θ, the amount of demand from renters that is fulfilled must equal the amount

of supply from owners that is matched with renters. In other words, the following fundamental

relationship must be satisfied

αS(θ) = βD(θ). (5)

The parameters α and β, along with θ, are determined endogenously in equilibrium.

In constructing a model for α and β, the following are desirable properties: (i) α (β) increases

in (deceases) in θ; (ii) α approaches 1 (0) when θ approaches 1 (0); (iii) β approaches 1 (0) when

θ approaches 0 (1), and (iv) higher α implies a lower β. A plausible model for α and β is one that

arises naturally from a multi-server loss queueing system approximation5. In such a system, 1− β

would correspond to the blocking probability (the probability that a request for rental finds all

products rented out, or, in queueing parlance, a request finds all servers busy) and α corresponds

to the probability that an available product (server) is rented (busy). Assuming the arrival of

rental requests can be approximated by a Poisson process, we can approximate α as follows (see

for example Sobel [1980])

α =
ρ(θ)

1 + ρ(θ)
. (6)

Applying Little’s law leads to

β =
1

1 + ρ(θ)
. (7)

5In the corresponding queueing system, the arrival process is that of rental requests. If we let m denote the mean
rental time per each rental, the arrival rate (in terms of rental requests per unit time) is given by λ(θ) = D(θ)/m.
For example, if the aggregate demand for renting per unit time is D(θ) = 1000 hours per unit time and the average
rental period is m = 5 hours, then the arrival rate of rental requests is D(θ)/m = 200 requests per unit time. If
we approximate the number (in equilibrium) of products available for rent per unit time by a constant, say K(θ),
then the service capacity in the system (the number of rental requests that can be fulfilled per unit time) is given by

C(θ) = S(θ)
m

, where S(θ) is the aggregate amount of time products are available for rent. For example, if S(θ) = 2000
hours and m = 5 hours, then C(θ) = 400 rental requests per unit time. Thus, we can express the workload (the ratio

of the arrival rate to service capacity) as ρ(θ) = λ(θ)
C(θ)

= D(θ)
S(θ)

. Note that we do not have to compute K(θ) explicitly

as the approximation we use to estimate α and β depends only the workload ρ(θ).
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As a result, we have α+ β = 1. Substituting the expression of ρ(θ) from (4) into (6) leads to

α =
D(θ)

D(θ) + S(θ)
, (8)

and β = S(θ)
D(θ)+S(θ) . Note that α and β, as defined, satisfy the demand-supply balance equation

(5) and properties (i)-(iv) stated above. Note that the above expressions for α and β can also be

obtained directly from the demand-supply balance equation (5) by setting β = 1 − α and solving

for α (that is, these are the unique values of α and β satisfying (5) and α+β = 1). The model for α

and β specified in (6) and (7) is of course not unique in satisfying properties (i)−(iv). However, we

expect other plausible models that satisfy these properties to lead to results that are qualitatively

similar to those we describe in the next two sections.

An equilibrium under collaborative consumption exists if there exists (θ, α) ∈ (0, 1)2 that is

solution to (3) and (8). When it exists, we denote this solution by (θ∗, α∗). Knowing the equilibrium

allows us to answer important questions regarding car ownership, overall usage, and social welfare,

among others.

4 Equilibrium Analysis

In this section, we focus on the case where the utility function has the linear form u(ξ) = ξ, and ξ

is uniformly distributed in [0, 1]. The utility function has constant returns to scale, and the utility

derived from each unit of usage is normalized to 1. It is straightforward to consider a utility function

in general linear form and carry out similar analysis. We use a linear utility for ease of exposition

and to allow for closed form expressions. Then the rental price must satisfy w
1−γ ≤ p ≤ 1− d since

otherwise, the owners or renters will not share. We denote the set of admissible prices by

A = {p| w

1− γ
≤ p ≤ 1− d}. (9)

Letting θ denote the solution to πo(ξ) = πr(ξ) leads to

θ =
c− ((1− γ)p− w)α

p+ d+ (1− p− d)α− ((1− γ)p− w)α
. (10)
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Given θ, the aggregate demand under collaborative consumption is given by D(θ) = θ2

2 and aggre-

gate supply by S(θ) = (1−θ)2
2 . This leads to

ρ(θ) =
θ2

(1− θ)2
,

and by (6)

α =
θ2

(1− θ)2 + θ2
. (11)

An equilibrium exists if equations (10) and (11) admit a solution (θ∗, α∗) such that (θ∗, α∗) ∈ (0, 1)2.

In the following theorem, we establish the existence and uniqueness of such an equilibrium. Let

Ω = {(p, γ, c, w, d)|c ∈ (0, 1), γ ∈ [0, 1), (w, d) ∈ [0, 1]2, p ∈ A},

and Ω◦ be the interior of Ω.

Theorem 1. A unique equilibrium (θ∗, α∗) exists for each (p, γ, c, w, d) ∈ Ω.

The existence of the equilibrium is guaranteed by the Intermediate Value Theorem. The uniqueness

is due to the monotonicity of (10) and (11); see the Appendix for a proof of this and all subsequent

results.

The following lemma describes how the equilibrium (θ∗, α∗) varies with the price p, commission

γ, cost of ownership c, moral hazard cost w, and inconvenience cost d.

Lemma 2. (θ∗, α∗) : Ω → (0, 1)2 is continuous on Ω, and continuously differentiable on Ω◦.

Moreover, ∂θ∗

∂p < 0, ∂α∗

∂p < 0, ∂θ∗

∂γ > 0, ∂α∗

∂γ > 0, ∂θ∗

∂c > 0, ∂α∗

∂c > 0, ∂θ∗

∂w > 0, ∂α∗

∂w > 0, ∂θ∗

∂d < 0, and

∂α∗

∂d < 0.

Lemma 2 indicates that, in equilibrium, the population of renters θ∗ increases with the cost of

ownership c, the commission γ, and the wear and tear cost w, but decreases with the rental price

p and the inconvenience cost d. Similarly, the probability that a car owner is successful in renting

her car out α∗, as an increasing function of θ∗, increases with c, γ, and w, and decreases with p

and d. These results are consistent with intuition.

In the presence of collaborative consumption, ownership in equilibrium, which we denote by ω∗,
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and total usage level, which we denote by q∗, are respectively given by

ω∗ = 1− θ∗, (12)

and

q∗ =
1− α∗θ∗2

2
. (13)

Proposition 3. Ownership ω∗ and usage q∗ both (i) strictly decrease in the cost of ownership c,

commission γ, and wear and tear cost w and (ii) strictly increase in rental price p and inconvenience

cost d.

Proposition 3 is a direct consequence of Lemma 2. While the monotonicity results in Proposition

3 are perhaps expected, it is not clear how ownership and usage under collaborative consumption

compare to those under no collaborative consumption. In what follows, we provide comparisons

between systems with and without collaborative consumption, and address the questions of whether

or not collaborative consumption reduces car ownership and usage.

In the absence of collaborative consumption, ownership and usage, denoted respectively by ω̂

and q̂, are given by

ω̂ = 1− c and q̂ =
1− c2

2
. (14)

In the following proposition, we assume that w
1−γ < 1−d so that the set of admissible prices consists

of more than a single price.

Proposition 4. Let pω = (1−d)(1−c)+wc
1−γc . Then, w

1−γ < pω < 1 − d, ω∗ < ω̂ if p < pω, ω∗ = ω̂ if

p = pω, and ω∗ > ω̂ if p > pω. Moreover, ∂pω
∂γ > 0, ∂pω

∂c < 0, ∂pω
∂w > 0, and ∂pω

∂d < 0.

Proposition 4 shows that depending on the rental price p, collaborative consumption can result in

either lower or higher ownership. In particular, when the rental price p is sufficiently high (above

the threshold pω), collaborative consumption leads to higher ownership (e.g., more cars). Moreover,

the threshold above which prices must be for this to occur is decreasing in the cost of ownership

and renter’s inconvenience, and increasing in the commission fee and wear and tear cost. The fact

that pω is decreasing in c is perhaps surprising as it shows that collaborative consumption is more
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likely to lead to more ownership (and not less) when the cost of owning is high. Collaborative

consumption in this case allows individuals to offset the high ownership cost and pulls in a segment

of the population that may not otherwise choose to own. The reverse is of course also true.

Collaborative consumption is more likely to lead to lower car ownership when the ownership cost

is low. These effects are illustrated for an example system in Figure 1.
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Figure 1: Impact of price on ownership

Similarly, usage can be either lower or higher with collaborative consumption than without it.

In this case, there is again a price threshold pq above which usage is higher with collaborative

consumption, and below which usage is higher without collaborative consumption. When either

w or d is sufficiently high, collaborative consumption always leads to higher usage. The result is

formally stated in Proposition 5 and illustrated for an example case with w = d = 0 in Figure 2.

Proposition 5. One of the following is true:

(i) There exists pq ∈ ( w
1−γ , 1− d) such that q∗ < q̂ if p < pq, q

∗ = q̂ if p = pq, and q∗ > q̂ if p > pq;

(ii) q∗ ≥ q̂ for all p ∈ [ w
1−γ , 1− d].

Moreover, there exists t ∈ (0, 1) such that (i) is true if w
1−γ + d < t, and (ii) is true otherwise.

Proposition 5 suggests that the opportunity to lower usage diminishes as either the moral hazard

cost w or the inconvenience cost d increases. The effect of d is perhaps easy to understand as

higher inconvenience cost reduces renters’ payoffs, leading to higher ownership and higher usage

(per proposition 3). The effect of w is on the other hand more subtle. As w increases, the minimum
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admissible price (for collaborative consumption to take place) also increases (recall that p must

satisfy p ≥ w
1−γ ). The higher moral hazard cost reduces owners’ payoffs. However, this could be

made up for with the higher price. It turns out that the effect of price dominates the effect of moral

hazard, such that, when the moral hazard is sufficiently high, collaborative consumption results in

higher usage at any admissible price.
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Figure 2: Impact of price on usage

Unlike pω, the price threshold pq is not monotonic in c (see Figure 3). As c varies, pq first

increases then decreases. This can be explained as follows. For collaborative consumption to lead

to lower usage, the ownership level must be sufficiently low (certainly lower than that without

collaborative consumption) such that the decrease in owners’ usage is greater than the increase

in renters’ usage. When the cost of ownership is low, the abundance of owners makes it easy

for the renters to find available cars. As a result, the individuals who switch from being owners

to being renters are able to fulfill most of their usage via renting (their usage is little to begin

with.) Therefore, ownership level has to be much lower compared to that without collaborative

consumption for there to be lower usage. This results in a low price threshold (recall that lower

prices induce owners to become renters). When the cost of the ownership is high, the price has to

be very low for collaborative consumption to lead to lower ownership (per proposition 4). Since

lower usage is only possible when there is lower ownership, the price threshold for lower usage must

again be low.
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Figure 3 illustrates the joint impact of p and c on ownership and usage. The price thresholds

pω and pq segment the full range of values of c and p into three regions, in which collaborative

consumption leads to (i) lower ownership and lower usage, (ii) lower ownership but higher usage,

and (iii) higher ownership and higher usage. These results highlight the fact that the impact of

collaborative consumption on ownership and usage is perhaps more nuanced than what is some-

times claimed by advocates of collaborative consumption. The results could have implications for

public policy. For example, in regions where the cost of ownership is high, the results imply that,

unless rental prices are kept sufficiently low or the commission extracted by the platform is made

sufficiently high, collaborative consumption would lead to more ownership and more usage. This

could be an undesirable outcome if there are negative externalities associated with ownership and

usage. Higher usage also implies less usage of the outside option (e.g., less use of public transport).

However, the reverse could also be true. In particular, if rental prices are kept sufficiently low,

collaborative consumption would lead to both lower ownership and lower usage.

Figure 3: Ownership and usage for varying rental prices and ownership costs

Next, we examine the impact of collaborative consumption on consumer payoff. Consumer

payoff is of course always higher with the introduction of collaborative consumption (consumers

retain the option of either owning or not owning, but now enjoy the additional benefit of earning

rental income if they decide to own or of fulfilling some of their usage through renting if they decide

not to own). What is less clear is who, among consumers with different usage levels, benefit more

from collaborative consumption.

Let π∗(ξ) and π̂(ξ) denote respectively the consumer payoff with and without collaborative
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consumption. Then,

π̂(ξ) =

 0 for 0 ≤ ξ < c;

ξ − c for c ≤ ξ ≤ 1,

and

π∗(ξ) =

 (1− α∗)ξ(1− p− d) for 0 ≤ ξ < θ∗;

ξ + (1− ξ)α∗[(1− γ)p− w]− c for θ∗ ≤ ξ ≤ 1.

Proposition 6. Let ∆(ξ) = π∗(ξ)− π̂(ξ). Then,

∆(ξ) =


(1− α∗)ξ(1− p− d) for 0 ≤ ξ < c;

−α∗ξ − (1− α∗)ξ(p+ d) + c for c ≤ ξ < θ∗;

(1− ξ)α∗[(1− γ)p− w] for θ∗ ≤ ξ ≤ 1,

if θ∗ ≥ c (or equivalently p ≤ pω), and

∆(ξ) =


(1− α∗)ξ(1− p− d) for 0 ≤ ξ < θ∗;

ξ + (1− ξ)α∗[(1− γ)p− w]− c for θ∗ ≤ ξ < c;

(1− ξ)α∗[(1− γ)p− w] for c ≤ ξ ≤ 1,

if θ∗ < c (or equivalently p > pω). In both cases, the difference in consumer payoff ∆(ξ) is positive,

piecewise linear, strictly increasing on [0, c), and strictly decreasing on [c, 1].

An important implication from Proposition 6 (from the fact that the difference in consumer

surplus ∆(ξ) is strictly increasing on [0, c) and strictly decreasing on [c, 1]) is that consumers who

benefit the most from collaborative consumption are those who are indifferent between owning and

not owning without collaborative consumption (recall that [c, 1] corresponds to the population of

owners in the absence of collaborative consumption). This can be explained by noting that there are

always three segments of consumers (see Figure 4). In the case where p ≤ pw, which corresponds to

the case where ownership decreases with collaborative consumption, the first segment corresponds

to consumers who are non-owners in the absence of collaborative consumption and continue to be

non-owners with collaborative consumption (indicated by “non-owners→non-owners” in Figure 4).

The benefit these consumers derive from collaborative consumption is due to fulfilling part of their

usage through accessing a rented car. This benefit is increasing in their usage.
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(a) θ∗ > c (b) θ∗ < c

Figure 4: Impact of usage level on the difference in consumer payoff

The second segment corresponds to consumers who are owners in the absence of collabora-

tive consumption and switch to being non-owners with collaborative consumption (indicated by

“owners→non-owners”). These consumers have to give up the fulfillment of some usage (because

a rental car may not always be available) and the amount they give up is increasing in their usage.

Therefore, the amount of benefit they receive from renting decreases in their usage level. The

third segment consists of consumers who are owners in the absence of collaborative consumption

and continue to be owners with collaborative consumption (indicated by “owners→owners”). The

benefit they experience is due to rental income. This income is decreasing in their usage (they have

less capacity to rent when they have more usage). A similar explanation can be provided for the

case where p > pw.

5 The Platform’s Problem

In this section, we consider the problem faced by the platform. A platform may decide, among

others, on the price and commission fees. In this section, we focus on price as the primary decision

made by the platform and treat other parameters as being exogenously specified6. There are of

course settings where the price is a decision made by the owners or involves the renters (e.g., via

a scheme where renters place bids and owners determine a winner). Owner-determined pricing

6A survey of major peer-to-peer car sharing platforms worldwide reveals that commission fees fall mostly within a
relatively narrow range (from 30 to 40 percent for those that include insurance) and do not typically vary across
markets in which platforms operates.
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is observed when the products are heterogenous in their quality and features (e.g., Airbnb allows

owners to set prices for their homes). Platform-determined pricing is plausible when the products

are homogeneous (e.g., DriveMycar determines the rental price for each category of car; this is

also observed in other peer-to-peer platforms such as Uber)7. In what follows, we provide analysis

for two cases: a for-profit platform whose objective is to maximize revenue and a not-for-profit

platform (e.g., a platform owned by a government agency or a municipality) whose objective is to

maximize social welfare. Similar analysis could be carried out for other objectives or with additional

constraints8.

For a for-profit platform, the optimization problem can be stated as follows.

max
p

vr(p) = γpαS(θ), (15)

subject to πo(θ) = πr(θ) (16)

α =
D(θ)

D(θ) + S(θ),
(17)

πo(ξ) ≥ πr(ξ) for ξ ≥ θ, (18)

πo(ξ) ≤ πr(ξ) for 0 ≤ ξ ≤ θ, (19)

πo(ξ) ≥ 0 for ξ ≥ θ, (20)

πr(ξ) ≥ 0 for 0 ≤ ξ ≤ θ. (21)

The constraints (16)-(17) are the defining equations for the equilibrium (θ∗, α∗). The incentive

compatibility constraints (18)-(19) ensure that an individual who chooses to be an owner (renter)

is better off being an owner (renter). The participation constraints (20)-(21) ensure that both

owners and renters participate in collaborative consumption.

For a not-for-profit platform, the objective is to maximize social welfare (i.e., the sum of con-

sumer surplus and platform revenue). Thus, the platform’s problem can be stated as

7There are also hybrid settings where owners determine a minimum acceptable price but allow the platform to adjust
it higher (e.g., RelayRides) or where the platform offers a suggested price (e.g., JustShareIt) but owners are allowed
to deviate.
8For example, in settings where either ownership or usage are associated with negative externalities, the objective
of a not-for-profit platform may be modified to include the social cost of these externalities. In settings where the
platform is owned by the product manufacturer (an increasing number of manufacturers are setting up platforms to
facilitate the peer-to-peer sharing of their products), the objective of the platform may account for product usage
since higher usage leads to more frequent product replacements.
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max
p
vs(p) =

∫
[θ,1]

(u(ξ)− (1− ξ)αw − c)f(ξ)dξ +

∫
[0,θ)

(u(βξ)− dβξ)f(ξ)dξ, (22)

subject to constraints (16)-(21).

In the next three sections, we provide detailed analysis for the for-profit and not-for-profit

platforms under the assumptions of Section 4. In Section 5.1 and 5.2, we consider the case where

(w, d) = (0, 0). In Section 5.3, we discuss the case where (w, d) 6= (0, 0).

5.1 The For-Profit Platform

In this section, we assume γ > 0 (the platform’s revenue is otherwise always zero). Under the

assumptions of Section 4, the for-profit platform’s problem can be restated as follows:

maxp vr(p) = 1
2γpα(1− θ)2, (23)

subject to (10) and (11). It is difficult to analyze (23) directly. However, as the map between θ and

p is strictly decreasing and continuously differentiable in both directions (by Lemma 2), we can use

(10) and (11) to express p in terms of θ as

p(θ) =
−θ3 + 2cθ2 − 2cθ + c

θ(θ − 1)(γθ − 1)
, (24)

and (23) as

maxθ vr(θ) = γ
2
(1−θ)θ(θ3−2cθ2+2cθ−c)

((1−θ)2+θ2)(γθ−1) subject to θ ∈ [θ, θ] (25)

where θ is the solution to (10) and (11) at p = 1, θ is the solution at p = 0, and [θ, θ] is the set of

solutions induced by p ∈ [0, 1]. We can use (24) to verify whether θ is in [θ, θ]. Specifically, θ < θ

if p(θ) > 1, θ ∈ [θ, θ] if p(θ) ∈ [0, 1], and θ > θ if p(θ) < 0.

Proposition 7. vr is strictly quasiconcave in both p and θ.

Proposition 7 shows that the platform’s problem is not difficult to solve. Depending on the value of

γ and c, vr is either strictly decreasing or first strictly increasing then strictly decreasing on [θ, θ].

In both cases, the optimal solution to (25), which we denote by θ∗r , is unique. We let p∗r , ω
∗
r , and
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q∗r denote the corresponding price, ownership, and usage, respectively. We also use the notation v∗r

to denote the optimal revenue vr(θ
∗
r).

Proposition 8. The platform’s optimal revenue, v∗r , is strictly quasiconcave in c, first strictly

increasing and then strictly decreasing.

Proposition 8 suggests that a platform would be most profitable when the cost of ownership is

“moderate” and away from the extremes of being either very high or very low. In these extreme

cases, not enough transactions take place because of either not enough renters (when the cost of

ownership is low) or not enough owners (when the cost of ownership is high). This result also

implies that a platform may have an incentive to affect the cost of ownership. For example, when

the cost of ownership is low, a platform may find it beneficial to impose a fixed membership fee on

owners, increasing the effective cost of ownership. On the other hand, when the cost of ownership

is high, the platform may find it beneficial to lower the effective cost of ownership by offering, for

example, subsidies (or assistance with financing) toward the purchase of new products.

Proposition 9. There exists a threshold cr ∈ (0, 1) such that optimal usage ω∗r < ω̂ if c < cr,

ω∗r = ω̂r if c = cr, and ω∗r > ω̂ if c > cr. Moreover, cr is strictly increasing in γ.

Proposition 9 shows that it continues to be possible, even when the price is chosen optimally by

a revenue maximizing platform, for collaborative consumption to lead to either higher or lower

ownership. In particular, collaborative consumption leads to higher ownership when the cost of

ownership is sufficiently high (above the threshold cr) and to lower ownership when the cost of

ownership is sufficiently low (below the threshold cr). This is easiest to understand in conjunction

with Proposition 4. When the cost of ownership is high, the platform may need to charge a price p∗r

higher than pω to induce the optimal level of ownership. Similarly, when the cost of ownership is low,

the platform may need to charge a price p∗r lower than pω. By Proposition 4, p∗r > pω and p∗r < pω

lead respectively to higher and lower ownership than that without collaborative consumption. It

follows that usage can also be higher with collaborative consumption than without it. In particular,

this is the case when ownership is higher (i.e., when c > cr). When ownership is lower, usage is

observed to be also mostly higher (except when c is very low). As illustrated in Figure 5, this is

the case for the full range of values of γ.
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(a) (b)

Figure 5: The impact of ownership cost on ownership and usage levels

5.2 The Not-for-Profit Platform

Analysis and results similar to those obtained for the for-profit platform can be obtained for the

not-for-profit platform (i.e., a platform that maximizes social welfare). Under the assumptions of

Section 4, the platform’s problem can be restated as follows:

maxp vs(p) = 1
2(1− αθ2)− (1− θ)c (26)

subject to (10) and (11), or equivalently as

maxθ vs(θ) = 1
2(1− θ4

((1−θ)2+θ2))− c(1− θ) subject to θ ∈ [θ, θ]. (27)

In the following proposition, we show that social welfare, vs, is concave in θ, indicating that

computing the optimal solution for the not-for-profit platform is also not difficult.

Proposition 10. vs is strictly concave in θ, and strictly quasiconcave in p.

Proposition 10 implies that (27) admits a unique optimal solution, which we denote by θ∗s . We also

use the notation v∗s to denote the optimal social welfare vs(θ
∗
s). The following lemma characterizes

θ∗s for varying values of γ.

Lemma 11. There exists a strictly positive decreasing function γs(c) such that θ∗s ∈ (θ, θ) if γ < γs.

Otherwise, θ∗s = θ.
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In other words, θ∗s is an interior solution (satisfying ∂vs
∂θ (θ∗s) = 0) if γ < γs. Otherwise, it is the

boundary solution θ. In particular, θ∗s never takes the value of θ. An important implication of

Lemma 11 is that, when γ < γs, a not-for-profit platform that relies on price alone as a decision

variable is able to achieve the maximum feasible social welfare realized under a central planner (a

decision maker that can directly decide on θ).

Proposition 12. If γ ≤ γs(c), then

max
θ∈[θ,θ]

vs = max
θ∈[0,1]

vs.

Using Lemma 11, we can also show that social welfare under optimal pricing is strictly decreasing

in the cost of ownership, which is perhaps consistent with intuition.

Proposition 13. The optimal social welfare, v∗s , is strictly decreasing in c.

Similar to the case of for-profit platform, we can show that a not-for-profit platform can lead to

either higher or lower level of ownership (relative to the case without collaborative consumption).

Again, there is a threshold in the cost of ownership above which ownership is higher and below

which ownership is lower. We omit the details for the sake of brevity.

In the remainder of this section, we compare outcomes under the for-profit and not-for-profit

platforms. In the following proposition, we show that a not-for-profit platform would always charge

a lower price than a for-profit platform. Therefore, it would also induce lower ownership and lower

usage.

Proposition 14. Let p∗s, ω
∗
s and q∗s denote the optimal price, ownership and usage levels under a

not-for-profit platform, respectively. Then, p∗s ≤ p∗r, ω∗s ≤ ω∗r , and q∗s ≤ q∗r .

In settings where there are negative externalities associated with ownership and usage, the result

in Proposition 14 means that the not-for-profit platform also lowers such externalities. The fact

that social welfare is maximized at prices lower than those that would be charged by a for-profit

platform suggests that a regulator may be able to nudge a for-profit platform toward outcomes

with higher social welfare by putting a cap on price.

Figure 6 illustrates the differences in social welfare between a system without collaborative con-

sumption and systems with collaborative consumption under (a) a for-profit platform (a revenue-
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maximizing platform) and (b) a not-for-profit platform (social welfare-maximizing) platform. Sys-

tems with collaborative consumption can improve social welfare substantially, especially when the

cost of ownership is neither too high nor too low (in those extreme cases, there are either mostly

owners or mostly renters and, therefore, few transactions). However, the differences in social wel-

fare between the for-profit and not-for-profit platforms are not very significant. This is because

both platforms have a similar interest in maintaining a relative balance of renters and owners.

Figure 6: The impact of ownership cost on social welfare

5.3 The Impact of Moral hazard and Inconvenience Costs

In this section, we consider the case where (w, d) 6= 0. The moral hazard cost w reduces the payoff

of owners and, therefore, places a lower bound on the set of admissible prices: p ≥ w
(1−γ) . Similarly,

the inconvenience cost d reduces the payoff of renters and, consequently, places an upper bound

on the price: p ≤ 1 − d. Obtaining analytical results is difficult. However, we are able to confirm

numerically that all the results obtained for (w, d) = 0 continue to hold (details are omitted for

brevity).

Of additional interest is the impact of w and d on platform revenue and social welfare. For

both the for-profit and not-for-profit platforms, we observe that social welfare is decreasing in both

w and d, regardless of the type of platform. This is consistent with intuition. However, revenue

for the for-profit platform can be non-monotonic in w. In particular, when the cost of ownership

is low, platform revenue can first increase then decrease with w. This effect appears related to the

fact that platform revenue is non-monotonic in the cost of ownership. A higher value of w can be

beneficial to the platform if it helps balance the amount of owners and renters, leading to a greater
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amount of transactions. An important implication from this result is that a for-profit platform

may not have an incentive to eliminate all moral hazard. The inconvenience cost d does not have

the same effect on platform revenue. An increase in d could lead to more transactions. However,

it limits the price a platform could charge. The net effect is that the platform revenue is always

decreasing in d. These effects are illustrated in Figure 7.

(a) γ = 0.4, c = 0.2, d = 0 (b) γ = 0.4, c = 0.8, w = 0

Figure 7: Platform revenue for varying moral hazard and inconvenience costs

6 Concluding Comments

In this paper, we described an equilibrium model of collaborative consumption. We characterized

equilibrium outcomes, including ownership and usage levels, consumer surplus, and social welfare.

We compared each outcome in systems with and without collaborative consumption and examined

the impact of various problem parameters including rental price, platform’s commission fee, cost

of ownership, owner’s moral hazard cost, and renter’s inconvenience cost. Our findings indicate

that, depending on the rental price, collaborative consumption can result in either lower or higher

ownership and usage levels, with higher ownership and usage levels more likely when the cost of

ownership is high. We showed that consumers always benefit from collaborative consumption, with

individuals who, in the absence of collaborative consumption, are indifferent between owning and

not owning benefitting the most. We also showed that the platform’s profit is not monotonic in

the cost of ownership, implying that a platform is least profitable when the cost of ownership is

either very high or very low (also suggesting that a platform may have an incentive in affecting the
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cost of ownership by, for example, imposing membership fees or providing subsidies). In addition,

we observed that platform profit can be non-monotonic in the moral hazard cost, suggesting that

a for-profit platform may not have the incentive to eliminate all moral hazard.

Possible avenues for future research are many. We mention few examples. It would be useful to

consider settings where individuals are heterogeneous along multiple dimensions (e.g., usage level,

sensitivity to inconvenience, and sensitivity to moral hazard). It would also be useful to examine

settings where there is competition among multiple platforms, with owners and renters having the

option of participating in one or more such platforms. As we mentioned in Section 4, it would be

of interest to analyze outcomes under platforms that may have alternative objectives, such as a

not-for-profit platform that may be interested in minimizing negative externalities associated with

ownership and usage or a for-profit platform operated by the product manufacturer that may be

interested in accounting for usage.
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Appendix

Proofs

Proof of Theorem 1: The right hand side of equation (11) is strictly increasing in θ. The right

hand side of equation (10) is decreasing in α as

∂θ

∂α
=

(c− p− d)((1− γ)p− w)− c(1− p− d)

(p+ d+ (1− p− d)α− ((1− γ)p− w)α)2
≤ 0.

The above inequality holds because, on one hand, (c − p − d)((1 − γ)p − w) − c(1 − p − d) =

(1 − p − d)((1 − γ)p − w − c) − (1 − c)((1 − γ)p − w) ≤ 0 if (1 − γ)p − w ≤ c, and on the other

hand, (c − p − d)((1 − γ)p − w) − c(1 − p − d) = (c − p − d)((1 − γ)p − w − c) − c(1 − c) < 0 if

(1− γ)p− w > c.

Solving equation (10) with respect to α, we obtain

α =
c− (p+ d)θ

θ(1− p− d) + (1− θ)((1− γ)p− w)
.

Define g(θ) := c−(p+d)
θ(1−p−d)+(1−θ)((1−γ)p−w) and h(θ) := θ2

(1−θ)2+θ2 . So g(θ)− h(θ) decreases with θ.

If θ = 0, then g(θ) = c
(1−γ)p−w > 0, h(θ) = 0, and g(0) − h(0) > 0. If θ = 1, then g(θ) = c−(p+d)

1−p−d ,

h(θ) = 1, and g(1) − h(1) = c−1
1−p−d < 0. Therefore, by the Intermediate Value Theorem, there

exists a unique θ∗ such that g(θ∗) = h(θ∗). This θ∗ along with the corresponding α∗ given by (11)

is the unique pair of (θ, α) satisfying both (10) and (11).

Proof of Lemma 2: Let

f(θ, α, p, γ, c, w, d) = (f1(θ, α, p, γ, c, w, d), f2(θ, α, p, γ, c, w, d))

= (θ − c− ((1− γ)p− w)α

p+ d+ (1− p− d)α− ((1− γ)p− w)α
, α− θ2

(1− θ)2 + θ2
),
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and

g(p, γ, c, w, d) = (g1(p, γ, c, w, d), g2(p, γ, c, w, d))

= (θ∗(p, γ, c, w, d), α∗(p, γ, c, w, d)).

By Theorem 1, g is the unique solution to f(θ, α) = 0.

We first show (θ∗, α∗) is continuous on Ω. Observe f is continuous on [0, 1]2×Ω unless d+ (p−

((1 − γ)p − w)α) + (1 − p − d)α = 0, or equivalently, unless (α, p, d) = (0, 0, 0) or (α, p, γ, w, d) =

(1, 1, 0, 0, 0). Take any sequence in yn → y0 = (p0, γ0, c0, w0, d0) ∈ Ω. For any subsequence ynk , as

(0, 1)2 is relatively compact, there exists a subsubsequence ynkl such that g(ynkl )→ (θ0, α0) ∈ [0, 1]2.

If (p0, d0) = (0, 0), then α0 6= 0, for in this case f1(g(ynkl ), ynkl ) → −∞ 6= 0. Similarly, if

(p0, γ0, w0, d0) = (1, 0, 0, 0), then α0 6= 1, for in this case, f1(g(ynkl ), ynkl ) → ∞ 6= 0. As f is

continuous everywhere else, we have f(θ0, α0, y0) = lim f(g(ynkl ), ynkl ) = 0. By Theorem 1, (θ0, α0)

is the unique solution to f(θ0, α0, y0) = 0 in (0, 1)2. So, g(y0) = (θ0, α0). As g(y0) is independent of

the choice of ynk , by the subsequence principle, g(yn)→ g(y0) = (θ0, α0), whence g is continuous.

To show g is continuously differentiable on Ω◦, we use Euler’s notation D for differential oper-

ators. In particular, for any component x and y of f ,

Dxf =

 ∂f1
∂x

∂f2
∂x

 ,

and

D(x,y)f =

 ∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 .

It follows that

D(θ,α)f =

 1 c(1−p−d)−(c−p−d)((1−γ)p−w)
(p+d+(1−p−d)α−((1−γ)p−w)α)2

− 2θ(1−θ)
[(1−θ)2+θ2]2 1


As c(1−p−d)−(c−p−d)((1−γ)p−w)

(p+d+(1−p−d)α−((1−γ)p−w)α)2 > 0 on Ω◦ (see proof of Theorem 1), D(θ,α)f is invertible. By the
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Implicit Function Theorem, g is continuously differentiable, and for each component x,

Dxg = −[D(θ,α)f ]−1Dxf, (28)

where

[D(θ,α)f ]−1 =
1

det(D(θ,α)f)

 1 (c−p−d)((1−γ)p−w)−c(1−p−d)
(p+d+(1−p−d)α−((1−γ)p−w)α)2

2θ(1−θ)
[(1−θ)2+θ2]2 1

 .

Calculating Dxf for each component x leads to

Dpf =

 (1−γ)α(α−c)+c(1−α)+(1−γ)α(1−α)d+α(1−α)w
(p+d+(1−p−d)α−((1−γ)p−w)α)2

0

 ,

Dγf =

 pα(c−p−d−(1−p−d)α)
(p+d+(1−p−d)α−((1−γ)p−w)α)2

0

 ,

Dcf =

 − 1
p+d+(1−p−d)α−((1−γ)p−w)α

0

 ,

Dwf =

 α(c−p−d−(1−p−d)α)
(p+d+(1−p−d)α−((1−γ)p−w)α)2

0

 ,

and

Ddf =

 (1−α)(c−((1−γ)p−w)α)
(p+d+(1−p−d)α−((1−γ)p−w)α)2

0

 .

First, Dcf1 < 0 is obvious. Second, from Equation (10), 0 < θ < 1 implies c− ((1− γ)p−w)α > 0

and c − p − d − (1 − p − d)α < 0. So, we have Ddf1 > 0, Dγf1 < 0 and Dwf1 < 0. Third,

(1−γ)α(α−c)+c(1−α) > 0 if α > c, and (1−γ)α(α−c)+c(1−α) = ((1−γ)α−c)(α−c)+c(1−c) > 0

if α ≤ c imply Dpf1 > 0. Therefore, from (28), we conclude ∂θ∗

∂p < 0, ∂α∗

∂p < 0, ∂θ∗

∂γ > 0, ∂α∗

∂γ > 0,

∂θ∗

∂c > 0, ∂α∗

∂c > 0, ∂θ∗

∂w > 0, ∂α∗

∂w > 0, ∂θ∗

∂d < 0, and ∂α∗

∂d < 0.

Proof of Proposition 3: By Lemma 2, ω∗(p, γ, c, w, d) and q∗(p, γ, c, w, d), as continuously dif-

ferentiable functions, are strictly decreasing in γ, c, and w, and strictly increasing in p and d.
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Proof of Proposition 4: By Equations (10) and (11), θ∗ is the unique solution to

φ(θ, p) = [(1+p+d)−((1−γ)p−w)]θ3− [2(p+d+c)−((1−γ)p−w)]θ2+(p+d+2c)θ−c = 0 (29)

in (0, 1). Replacing θ by c in (29) leads to

φ(c, p) = c(1− c)[(1− γc)p− ((1− d)(1− c) + wc)] = 0.

So,

pω =
(1− d)(1− c) + wc

1− γc

is the rental price that induces θ∗ = c, or equivalently, ω∗ = 1 − θ∗ = 1 − c = ω̂. The assumption

w
1−γ < 1 − d ensures that w

1−γ < pω < 1 − d. As ω∗ is strictly increasing in p, the first statement

follows. In addition,

∂pω
∂γ

=
c((1− d)(1− c) + wc)

(1− γc)2
> 0,

∂pω
∂c

=
w − (1− γ)(1− d)

(1− γc)2
< 0,

∂pω
∂w

=
c

1− γc
> 0,

and

∂pω
∂d

=
c− 1

1− γc
< 0.

Proof of Proposition 5: From Proposition 4, we have

q∗(pω) =
1− α∗c2

2
>

1− c2

2
= q̂.

As q∗ is continuously increasing in p, we know that either (i) or (ii) is true. Moreover, let p = w
1−γ

be the minimal admissible price. Then, (i) is true if and only if q∗(p) < q̂. Otherwise, (ii) is

true. In the rest of the proof, we show that both (i) and (ii) can be true, depending on whether
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w
1−γ + d < t or w

1−γ + d ≥ t, for some t ∈ (0, 1).

To this end, we first claim that q∗(p) is strictly increasing in w
1−γ + d. It suffices to show that

θ∗(p) is strictly decreasing in w
1−γ + d, as q∗ is a strictly decreasing function of θ∗. From (29), we

have

φ(θ, p) =(1 +
w

1− γ
+ d)θ3 − 2(

w

1− γ
+ d+ c)θ2 + (

w

1− γ
+ d+ 2c)θ − c

=θ3 − 2cθ2 + 2cθ − c+ (
w

1− γ
+ d)(θ3 − 2θ2 + θ).

It is easy to verify that φ(θ, p) is strictly increasing in w
1−γ +d. Therefore, θ∗(p), the unique solution

to φ(θ, p) = 0, must be strictly decreasing in w
1−γ + d.

Next, we claim that q∗(p) > q̂ if w
1−γ +d = 1 (this corresponds to when w

1−γ +d is at its largest),

and q∗(p) < q̂ if w
1−γ + d = 0 (this corresponds to when w

1−γ + d is at its smallest). Substituting

(11) into (13) yields

q∗(p) =
1

2
− θ∗4

2(2θ∗2 − 2θ∗ + 1)
.

So, q∗(p) < q̂ if and only if

ψ(p) = θ∗4 − 2c2θ∗2 + 2c2θ∗ − c2 > 0.

Note that

ψ(p) =ψ(p)− cφ(θ∗(p), p)

=θ∗4 − cθ∗3 − c( w

1− γ
+ d)(θ∗3 − 2θ∗2 + θ∗).

Then, if w
1−γ + d = 1, we have

ψ(p) =θ∗(θ∗3 − 2cθ∗2 + 2cθ∗ − c)

<θ∗φ(θ∗(p), p)

=0,
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and if w
1−γ + d = 0, we have (by Proposition 4),

ψ(p) =θ∗4 − cθ∗3

>0.

Finally, as q∗(p) is strictly increasing in w
1−γ + d, by the Intermediate Value Theorem, there exists

t ∈ (0, 1) such that q∗(p) < q̂ if w
1−γ + d < t and q∗(p) ≥ q̂ if w

1−γ + d ≥ t. This completes the proof.

Proof of Proposition 6: The derivation of ∆(ξ) is straightforward. It is easy to see that ∆(ξ) is

piecewise linear, increasing on [0, c), and decreasing on [c, 1]. The fact that ∆(ξ) is positive follows

from the incentive compatibility and participation constraints (18)-(21).

Proof of Proposition 7: We show vr is strictly quasiconcave in θ. Then, the statement for p will

follow as a consequence, for the composition of a quasiconcave function and a monotone function

is still quasiconcave. To maximize total revenue, the platform has to balance rental price p and

the amount of successful transaction α(1 − θ)2/2. Among the duo, rental price p is a decreasing

function in θ, while the amount of transaction α(1 − θ)2/2 is a quasiconcave function in θ that

peaks at θ = 1
2 , the point where rental supply equals to rental demand. This implies vr(θ) in (25)

is strictly decreasing on [max{12 , θ}, θ]. Therefore, to show vr(θ) is strictly quasiconcave on [θ, θ],

it suffices to show it is strictly quasiconcave on (0, 12).

As vr is smooth in θ, we have

∂vr
∂θ

=
γ

2

c(2θ2 − 2θ + 1)2(γθ2 − 2θ + 1) + θ3(−4γθ4 + (8γ + 6)θ3 − (8γ + 12)θ2 + (3γ + 11)θ − 4)

(γθ − 1)2(2θ2 − 2θ + 1)2

(30)

Note that ∂vr
∂θ (0) > 0 and ∂vr

∂θ (12) < 0. We claim that the numerator is strictly decreasing on

θ ∈ (0, 12). Suppose this is true. Then ∂vr
∂θ is first positive then negative on (0, 12), whence vr is

strictly quasiconcave on (0, 12). To see the claim is true, set

g1(θ, γ) = (2θ2 − 2θ + 1)2(γθ2 − 2θ + 1),
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and

g2(θ, γ) = θ3(−4γθ4 + (8γ + 6)θ3 − (8γ + 12)θ2 + (3γ + 11)θ − 4).

We show that g1 and g2 are both strictly decreasing in θ.

First, we show g1 is strictly decreasing.

∂g1
∂θ

= 2(2θ2 − 2θ + 1)(6γθ3 − (4γ + 10)θ2 + (γ + 10)θ − 3).

It suffices to show that

h1(θ, γ) = 6γθ3 − (4γ + 10)θ2 + (γ + 10)θ − 3 < 0.

Indeed, we have

∂h1
∂θ

= 18γθ2 − (8γ + 20)θ + (γ + 10),

and

∂2h1
∂γ∂θ

= 18θ2 − 8θ + 1.

∂2h1
∂γ∂θ > 0 implies (∂h1∂θ (·, γ) : γ ∈ (0, 1)) is pointwise bounded below by ∂h1

∂θ h1(·, 0). As ∂h1
∂θ (θ, 0) =

−20θ + 10 > 0 on (0, 12), ∂h1
∂θ (·, γ) > 0 for all γ. So, we conclude h1(·, γ) is increasing. Then,

h1(
1
2 , γ) = −1

2 + γ
4 < 0 implies h1(θ; γ) < 0. Therefore, g1 is strictly decreasing.

Second, we show g2 is strictly decreasing.

∂g2
∂θ

= −4θ2(7γθ4 − (12γ + 9)θ3 + (10γ + 15)θ2 − (3γ + 11)θ + 3).

It suffices to show that

h2(θ, γ) = 7γθ4 − (12γ + 9)θ3 + (10γ + 15)θ2 − (3γ + 11)θ + 3 > 0.

We have

∂h2
∂θ

= 28γθ3 − (36γ + 27)θ2 + (20γ + 30)θ − (3γ + 11),

∂2h2
∂θ2

= 84γθ2 − (72γ + 54)θ + (20γ + 30),
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and

∂3h2
∂γ∂θ2

= 84θ2 − 72θ + 20.

∂3h2
∂γ∂θ2

> 0 implies (∂
2h2
∂θ2

(·, γ) : γ ∈ (0, 1)) is pointwise bounded below by ∂2h2
∂θ2

(·, 0). As ∂2h2
∂θ2

(θ, 0) =

−54θ + 30 > 0 on (0, 12), ∂2h2
∂θ2

h2 > 0. It follows that ∂h2
∂θ is increasing in θ. Then, ∂h2

∂θ (12 , γ) =

−11
4 + 3

2γ < 0 implies ∂h2
∂θ < 0. So, h2(·, γ) is decreasing. At last, we have h2(

1
2 , γ) = 1

8 −
1
16γ > 0,

whence h2 > 0. Therefore, g2 is strictly decreasing.

Proof of Proposition 8: We first show that θ∗r is increasing in c. Observe θ∗r = θ if θ ≥ 1
2 , and

θ∗r ≤ 1
2 if θ < 1

2 . As θ = θ∗(1) is increasing in c, it suffices to assume θ < 1
2 and show θ∗r is increasing

in c in this case. By (25),

∂2πp
∂θ∂c

=
γ(γθ2 − 2θ + 1)

(γθ − 1)2
> 0

for θ < 1
2 . This implies vr is supermodular in (θ, c) on [0, 12 ]2. As the correspondence c → [θ, 12 ] is

increasing, by the Topkis Theorem (Topkis [1998, Lemma 2.8.1]), θ∗r is increasing in c.

Next, we show that v∗r is strictly quasiconcave in c. As θ in Lemma 2 is continuously dif-

ferentiable, ∂vr
∂c are continuous. By the Envelope Theorem (Milgron and Segal [2002, Corollary

4]),

∂v∗r
∂c

(γ, c) =
∂vr
∂c

(p∗r , γ, c)

on any compact interval in (0, 1). As (0, 1) can be covered by an increasing union of compact

subintervals, these envelope equations hold on entire (0, 1). Therefore,

∂v∗r
∂c

(γ, c) = γp∗r
2θ∗r(θ

∗
r − 1)(2θ∗r − 1)(θ∗2r − θ∗r + 1)

(2θ∗2r − 2θ∗r + 1)2
∂θ

∂c
(p∗r , γ, c).

Lemma 2 shows ∂θ
∂c > 0. So, ∂v∗r

∂c > 0 if θ∗r <
1
2 , ∂v∗r

∂c = 0 if θ∗r = 1
2 , and ∂v∗r

∂c < 0 if θ∗r >
1
2 . As θ∗r

is increasing in c, we conclude v∗r is quasiconcave in c. Moreover, substituting θ with 1
2 from (30)

yields ∂vr
∂θ (12) = γ(2cγ+γ−3)

4(γ−2)2 < 0. This implies θ∗r = 1
2 iff θ = 1

2 . Therefore, v∗r is strictly quasiconcave

in c.

It remains to be shown that v∗r has a strictly increasing as well as a strictly decreasing segment.

Given what we have shown, it is sufficient to prove that, as c ranges through (0, 1), θ = θ(0) has

a segment below 1
2 , and θ = θ(1) has a segment above 1

2 . From (29), θ(0) < 1
2 iff φ(12 , 0) > 0, and
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θ(1) > 1
2 iff φ(12 , 1) < 0. The former is equivalent to

c <
1

4
,

and the latter to

c >
3

4
− 1

4
γ.

Therefore, v∗r is strictly increasing when c < 1
4 , and strictly decreasing when c > 3

4 −
1
4γ. As c

ranges through (0, 1), both segments are non-empty.

Proof of Proposition 9: By Proposition 4, c ∈ (θ, θ) for (γ, c) ∈ (0, 1)2. As vr is quasiconcave,

ω∗p(c) ≤ ω̂(c) iff θ∗r(c) ≥ c iff ∂vr
∂θ (c) ≥ 0. Replacing θ by c in (30), we have

∂vr
∂θ

(c) =
γ

2

c(1− c)(2c4 − 6c3 + (7 + γ)c2 − 5c+ 1)

(γc− 1)2(2c2 − 2c+ 1)2
.

Let

g(c, γ) = 2c4 − 6c3 + (7 + γ)c2 − 5c+ 1.

Then ∂vr
∂θ (c) ≥ 0 iff g(c, γ) ≥ 0. Moreover, g(0, γ) = 1 > 0, g(1, γ) = γ − 1 < 0, and g is

strictly convex in c, as ∂2g
∂c2

= 24c2 − 36c + 14 + 2γ > 0. It follows that g(c, γ) = 0 has a unique

solution cr(γ) ∈ (0, 1). We have proved the first statement. For the second statement, observe

g(c, γ1) < g(c, γ2) if γ1 < γ2. As g(cr(γ1), γ1) = 0, we have g(cr(γ1), γ2) > 0, and by the first

statement, it must be true that g(c, γ2) > 0 for c < cr(γ1). Therefore, we must have cr(γ2) > cr(γ1).

Proof of Proposition 10: It suffices to show that vs is strictly concave in θ. As θ is strictly

decreasing in p, this implies that vs is strictly quasiconcave in p. From (27), we have

∂2vs
∂θ2

= −2θ2(1− θ)2(2θ2 − 2θ + 3)

(2θ2 − 2θ + 1)3
< 0

on (0, 1). Therefore, vs is strictly concave on [θ, θ].

Proof of Lemma 11 We denote by, θ∗c , the unique optimal solution to maxθ∈[0,1] vs for c ∈ [0, 1].

39



By the Maximum Theorem and Topkis Theorem, θ∗c is continuously increasing in c. For c ∈ (0, 1),

as

∂vs
∂θ

=
1

4
(−1 + 4c− 2θ +

(1− 2θ)

(2θ − 2θ + 1)2
) (31)

is stricly positive when θ = 0, and strictly negative when θ = 1, we know that vs, apart from being

concave, is first increasing, then decreasing on [0, 1]. Therefore, ∂vs
∂θ (θ∗c ) = 0. It follows that θ∗c

satisfies (2θ∗5c −3θ∗4c +2θ∗3c )
(2θ∗2c −2θ∗c+1)2

= c. Replacing c by (2θ∗5c −3θ∗4c +2θ∗3c )
(2θ∗2c −2θ∗c+1)2

in (24) yields

p(θ∗c ) =
θ∗2c

(1− γθ∗c )(2θ∗2c − 2θ∗c + 1)
> 0.

If p(θ∗c ) < 1, then θ∗c ∈ (θ, θ), in which case, θ∗s = θ∗c . Else, if p(θ∗) ≥ 1, then θ∗c ≤ θ, in which case,

θ∗s = θ.

Observe p(θ∗c ) < 1 iff

γ ≤ (θ∗c − 1)2

θ∗c (2θ
∗2
c − 2θ∗c + 1)

.

So, if we set γs = (θ∗c−1)2
θ∗c (2θ

∗2
c −2θ∗c+1)

, then θ∗c ∈ (θ, θ) if γ < γs, and θ∗c ≤ θ if γ ≥ γs. It is easy to see

that γs is decreasing in θ∗c , whence it is decreasing in c.

Proof of Proposition 12: As vs is strictly concave on [0, 1], Lemma 11 implies θ∗s is socially

optimal if γ ≤ γs(c).

Proof of Proposition 13: To prove the proposition, we introduce the Lagrangian function

L(θ, µ, γ, c) = vs(θ) + µ1(θ − θ) + µ2(θ − θ).

Equation (31) shows that ∂vs
∂θ is bounded on (θ, γ, c) ∈ [0, 1] × [0, 1) × (0, 1). By the first order
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condition

∂vs
∂θ

(θ∗s) + µ∗1 − µ∗2 = 0;

µ∗1(θ
∗
s − θ) = 0;

µ∗2(θ − θ∗s) = 0;

µ∗1, µ
∗
2 ≥ 0,

the Kuhn-Tucker vector µ∗ is unique and bounded by sup |∂vs∂θ | (at most one of µ∗1, µ
∗
2 is non-zero).

By the Saddle-point Theorem, (θ∗s , µ
∗) is a pair of optimal solution and Kuhn-Tucker vector iff it

is a saddle point of the Lagrangian. It follows that there is a unique saddle point (θ∗s , µ
∗) for each

(γ, c). As ∂L
∂c is continuous, the Envelope Theorem for saddle-points (Milgron and Segal [2002,

Theorem 4 and 5]) implies that

∂v∗s
∂c

(c) =
∂L

∂c
(θ∗s , µ

∗, c)

= −(1− θ∗s)− µ∗1
∂θ

∂c
+ µ∗2

∂θ

∂c

holds everywhere (In general, the envelope equation holds almost everywhere without unique saddle-

points). By Lemma 11, µ∗2 is always 0, and by Lemma 2, ∂θ
∂c > 0. So, we have ∂v∗s

∂c < 0 everywhere.

Therefore, v∗s is strictly decreasing in c.

Proof of Proposition 14: Let

g(θ, c) = −θ(θ
3 − 2cθ2 + 2cθ − c)
((1− θ)2 + θ2)

.

Then, vr(θ, c) = γ(1−θ)
2(1−γθ)g(θ, c). Let θr be the unique solution to

∂vr
∂θ

=
γ(γ − 1)

2(1− γθ)2
g(θ, c) +

γ(1− θ)
2(1− γθ)

Dθg(θ, c) = 0
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in (0, 1/2), and θs be the unique solution to

∂vs
∂θ

=
1

4
(−1− 2θ +

(1− 2θ)

(2θ2 − 2θ + 1)2
+ 4c) = 0

in (0, 1). We claim that θr ≤ θs. Suppose the claim is true. Then, θ∗r = θ ≤ θ∗s whenever θr < θ,

θ∗r = θr ≤ θs = θ∗s whenever θr, θs ∈ [θ, θ], and θ∗r ≤ θ = θ∗s whenever θs > θ. In all the cases, we

have θ∗r ≤ θ∗s .

To prove the claim, observe g is strictly concave in θ on [0, 1], since

∂2g

∂θ2
= −4θ2(1− θ)2(2θ2 − 2θ + 3)

(2θ2 − 2θ + 1)3
< 0.

Let θg be the unique solution to

∂g

∂θ
=

1

2
(−1− 2θ +

1− 2θ

(2θ2 − 2θ + 1)2
+ 2c) = 0

in (0, 1). We show that θr ≤ θg ≤ θs.

To see that θr ≤ θg, note that

∂vr
∂θ

(θg) =
γ(γ − 1)

2(1− γθg)2
g(θg, c) ≤ 0.

As vr is strictly quasiconcave on [0, 1/2], it must be true that θr ≤ θg. To see that θg ≤ θs, note

that

h(θ) = −1− 2θ +
1− 2θ

(2θ2 − 2θ + 1)2

is strictly decreasing. So, it must be true that θg ≤ θs.
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